Local current analysis on defective zigzag graphene nanoribbons devices for biosensor material applications
نویسندگان
چکیده
منابع مشابه
Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons
We propose a graphene nanoribbon-based heterojunction, where a defect-free interface separates two zigzag graphene nanoribbons prepared in opposite antiferromagnetic spin configurations. This heterospin junction is found to allow the redirecting of low-energy electrons from one edge to the other. The basic scattering mechanisms and their relation to the system’s geometry are investigated throug...
متن کاملTransport Gap Engineering in Zigzag Graphene Nanoribbons
Graphene, a recently discovered form of carbon, has received much attention over the past few years due to its excellent electrical, optical, and thermal properties [1]. With an extraordinary carrier mobility and high current density [2], graphene's application in electronic devices is promising. As a zero bandgap material, pristine graphene cannot be used as a semi-conducting channel in transi...
متن کاملTrapped modes in zigzag graphene nanoribbons
We study the scattering on an ultra-low potential in zigzag graphene nanoribbon. Using a mathematical framework based on the continuous Dirac model and the augmented scattering matrix, we derive a condition for the existence of a trapped mode. We consider the threshold energies where the continuous spectrum changes its multiplicity and show that the trapped modes may appear for energies slightl...
متن کاملEffects of Strain on Notched Zigzag Graphene Nanoribbons
The combined effects of an asymmetric (square or V-shaped) notch and uniaxial strain are studied in a zigzag graphene nanoribbon (ZGNR) device using a generalized tight-binding model. The spin-polarization and conductance-gap properties, calculated within the Landauer–Büttiker formalism, were found to be tunable for uniaxial strain along the ribbon-length and ribbon-width for an ideal ZGNR and ...
متن کاملTopological phase-diagram of time-periodically rippled zigzag graphene nanoribbons
The topological properties of electronic edge states in time-periodically driven spatially-periodic corrugated zigzag graphene nanoribbons are studied. An effective one-dimensionalHamiltonian is used to describe the electronic properties of graphene and the time-dependence is studiedwithin the Floquet formalism. Then the quasienergy spectrumof the evolution operator is obtained using analytical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Chemistry
سال: 2021
ISSN: 0192-8651,1096-987X
DOI: 10.1002/jcc.26557